

String Quartet in F major Op. 18, No. 1

http://science.widener.edu/ ~panek/130/130.html

Five Components of Instruments

- 1. Energy source
- 2. Energy connector from the source to the instrument itself

Components of Instruments

4. Resonant oscillator

5. Sound emitter

1. Energy Source

- Muscle Power
 - Arm Motion
 - Finger Motion
 - Lung Motion
 - ◆Foot Motion
- Electrical Power

How much Energy?

- Typical Instrument = 50W
- 1% is converted to sound
- Total Orchestra ~ 60W
- For 90 dB = 10^{-3} W/m² at an ear of 1 cm² P= 10^{-7} W!!

2. Energy Connector

- Transmits from Source to the instrument itself
- Examples:
 - Violin family
 - Piano
 - Wind Instruments
 - Organ

3. Primary Oscillator

- The part of the instrument that vibrates and is directly responsible for the sound.
- Examples:
 - Strings, reeds, lips, surfaces, air.

4. Resonant Oscillator

- Amplifies certain frequencies to produce a harmonic series.
- Examples:
 - Violin family
 - Piano
 - Winds
 - Drums

5. Sound Emitter

- Gets the sound out. Usually via a hole or opening
- Examples:
 - Violin family
 - Piano
 - Winds
 - Drums

1. Energy Source

- Arm motion for bowing
- Finger motion for plucking (violin or guitar) or moving keys (piano)

2. Energy Connector

- Bows
- Hammers
 - Picks or Quills
- Fingers

3. Primary Oscillator Strings

$$\frac{f_2}{f_1} = \sqrt{\frac{W_1}{W_2}}$$

$$\frac{f_2}{f_1} = \sqrt{\frac{k_2}{k_1}}$$

$$f_n = n(v/2L)$$

- String Variables related to frequency
 - Length
 - Tension
 - Density

- Frequency Variation
 - Many Strings of Different Length, Tension, Density
 - Change Effective Length of String

- Activation Location
 - Changes timbre by reducing some harmonics
 - No nodes at activation points

Nodes at middle of the string

Antinodes at middle of the string

Fundamental

Third Harmonic

Fifth Harmonic

Activation Position and Harmonic Spectra

- 4. Resonant Oscillator
 - Wooden Box or Sheet of Irregular Shape
 - Example: Violin (MI CD)

5. Sound Emitter

- Opening in the Body of the Instrument
- Examples: Violin and Guitar, etc.

Branford Marsalis

Classical pieces on Soprano Saxophone

Stringed instruments on the MI CD

- Energy Source
 - Lungs
- Energy Connector
 - Air From Player's Lungs or From a Compressor

- Primary Oscillator
 - Reed(s)
 - Player's Lips (Brasses)
 - Air Near Opening Into Which Player Blows (Flutes)

- Reed: Single and Double
 - Bernoulli effect
 - Alternating high and low pressure
 - Examples: clarinets, oboes, saxophones, bag pipes, accordians

- Vibrating Lips
 - Similar to reeds, but the lip acts like the reed
 - Examples: Trumpet, tuba,
 French horn, baritone

- Air Near the Opening
 - Steady flow vs. Turbulent Flow near a sharp edge
 - Turbulence cause pressure changes
 - Examples: flute, <u>recorder</u>, organ pipes

- Resonant Oscillator
 - Air Column Within the Tube that Constitutes the Body of the Instrument
 - Demo

- Sound Emitter
 - Hole in the Opposite End

- Frequency Variation
 - Tubes of Different Length
 - Interlocking Pipes
 - System of Valves
 - Series of Holes

- Tubes of Different Length
 - Not convenient
 - Examples: Pipe Organ and Pan Pipes

Interlocking Pipes

- Interlocking Pipes
 - Easy to get any pitch
 - Difficult to play because position must be exact
 - Example: Trombone

System of Valves

Wind Instruments

- System of Valves
 - Easy to play
 - Difficult to get pitch accurate for all notes (compromise)
 - Examples: Trumpet, French Horn, Baritone, Tuba

Wind Instruments

Series of Holes

Wind Instruments

- Series of Holes
 - Skill is required to cover the holes
 - Examples: clarinets, flutes, oboe, bassoon, recorder, and saxophones

Strings and Winds

Frequency vs. Length

$$f_n = n(v/2L)$$

$$f_n = (2n-1)(v/4L)$$

Strings and Winds

Frequency vs. Length

$$\frac{f_A}{f_B} = \frac{L_B}{L_A}$$

Strings and Winds

Look at examples on MI CD

- Energy Source
 - Arm motion
 - Finger motion
 - Foot motion

- Energy Connector
 - ◆Sticks
 - Mallets
 - Hands
 - Fingers

- Primary Oscillator
 - Two-Dimensional Surface
 - Drum Head
 - Three-Dimensional Surface
 - Cymbal, Gong, xylophone, chimes

- Drum Frequencies
 - Not a harmonic series
 - No definite pitch
 - Noise
 - Role in music is rhythm not melody

Timbre

 As with stringed instruments, timbre can be made to change depending on how the instrument is struck.

Percussion

- Resonant Oscillator
 - Wide variation that depends on the instrument
 - Examples:
 - → Tympani
 - Chimes
 - Xylophone
 - Cymbals and Gongs.

Often is the Resonant
Oscillator itself

