

Alleluia and Fugue, Op. 40b and Prayer of Saint Gregory

Chapter 6 - Outline

Standing waves
Basics
Frequencies and wavelengths
Longitudinal waves
Complex Waves
Timbre

Produced when incident and reflected waves <u>interfere.</u>

Principle of superposition.

Standing Wave

There is no apparent motion along the direction in which the two individual waves move.

Harmonic Series

A series of frequencies in which all members are an integral multiple of the lowest frequency

The lowest frequency is called the <u>fundamental frequency</u> or <u>first harmonic.</u>

The higher frequencies are called the second harmonic, third harmonic, fourth harmonic, etc.

 $f_2 = 2f_1$ $f_3 = 3f_1$ $f_4 = 4f_1$

Harmonics above the first are also called **Overtones**.

Tube Open at Both Ends

(a)

 $\lambda_1 = 2L$ $f_1 = \frac{v}{\lambda_1} = \frac{v}{2L}$

 $\lambda_2 = L$

First harmonic

Second harmonic

Third harmonic

Tube Open at Both Ends:

$\lambda_n = 2L/n$ $f_n = nf_1$

Tube Closed at Both Ends: (same as rope - fixed ends)

$\lambda_n = 2L/n$ $f_n = nf_1$

Tube Closed at One End:

$\lambda_n = 4L/(2n-1)$ $f_n = (2n-1)(v/4L)$

Standing Sound Waves Tube Closed at One End: $f_2 = 3 f_1$ $f_3 = 5 f_1$ $f_A = 7 f_1$

Resonance in tubes

Complex Waves

Created when frequencies which are members of a harmonic series are added.

Complex Waves

When waves whose frequencies are members of a harmonic series are added, the frequency of the resultant wave is **always** the same as that of the fundamental.

Missing Fundamental (virtual pitch) Track 37.

Virtual Pitch with Random Harmonics Track 43-45

Fourier Synthesis

Any periodic wave of frequency f₁ can be produced by adding together sine waves of frequency f₁, 2f₁, 3f₁, 4f₁, 5f₁, etc.

Fourier Synthesis

Demo with Fourier Synthesizer and Oscilloscope

Fourier Analysis

Any periodic wave of frequency f₁, no matter how complex, can be broken down into sine waves of frequency f_1 , $2f_1$, 3f₁, 4f₁, 5f₁, etc.

Fourier Analysis

The set of sine waves that make up a complex wave are called the complex wave's Fourier Components. Fourier Spectrum or Harmonic Spectrum

A listing of the amplitudes of each component in either tabular or graphical form

Timbre

The different combinations of harmonics gives different qualities or timbers to sounds.

Flute (few harmonics)

Oboe (many harmonics)

Violin (intense harmonics)

The Effect of spectrum on timbre Track 53

III-6 Vibrations on a Guitar String

III-7 Fourier Analysis and Synthesis

Summary

Any periodic wave of frequency f₁ can be produced by adding together sine waves of frequency f₁, 2f₁, 3f₁, 4f₁, 5f₁, etc.

Summary

Any periodic wave of frequency f₁, no matter how complex, can be broken down into sine waves of frequency f_1 , $2f_1$, 3f₁, 4f₁, 5f₁, etc.

Summary

The pitch we hear always corresponds to that of the fundamental frequency.