

Sonata No. 1 Op.78 in G

violin and piano (1879)

Motion that repeats at regular intervals of time

Oscillation

One complete round trip of the motion

Period

The time required for one complete oscillation

Frequency
 The number of oscillations per second

Equilibrium Position The rest (or neutral) position

Displacement The distance from the equilibrium position

Amplitude The maximum displacement (absolute value)

Period - Time (Usually seconds)

Frequency - Oscillations (or cycles) per second
 One cycle per second is called one Hertz (Hz)

Displacement - Distance May be cm, m, ft, degrees, etc.

Amplitude - Distance May be cm, m, ft, degrees, etc.

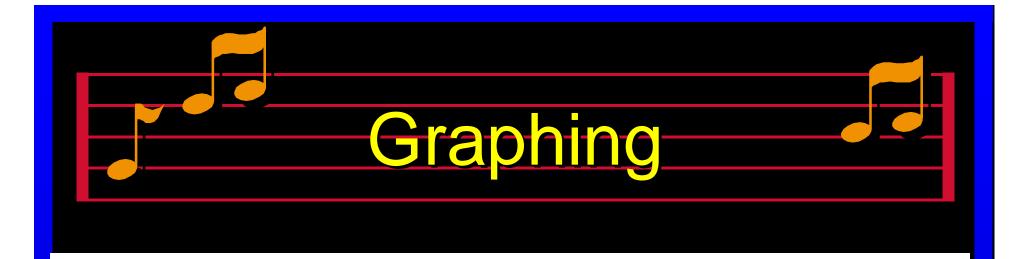
f = 1/Tor T = 1/f

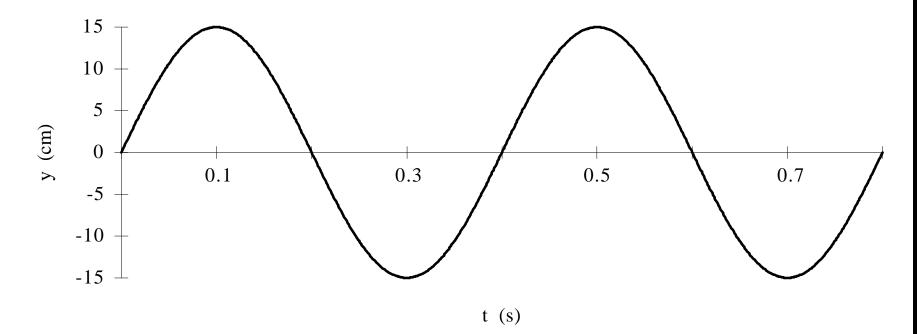
- The frequency is independent of the amplitude
- The greater the inertia factor, the less the frequency
- The greater the stiffness factor, the greater the frequency

W(N)	T(s)	f(Hz)
0.50	0.142	7.04
1.00	0.200	5.00
2.00	0.284	3.52
4.00	0.40	2.50
8.00	0.568	1.76

Relation between frequency and weight:

Relation between frequency and spring constant:


- The frequency is independent of the amplitude
- The greater the inertia factor, the less the frequency
- The greater the stiffness factor, the greater the frequency



 Occurs whenever an oscillating system is driven at its natural frequency

Under resonant conditions, a system oscillates at its maximum amplitude

In Phase (0 degrees)
Out of Phase (180 degrees)
Measured in degrees