I. Short Answer Questions

SAQ #1. Please state and BRIEFLY explain the two major objectives of population eco	ology.			
diagram and explain objective 1 -	(3 pts)			
explain the key "emergent properties" that this objective aims at explaining -	(3 pts)			
diagram and explain objective 2 -				
explain the key "emergent properties" that this objective aims at explaining -	(3 pts)			
SAQ #2. Consider the simple exponential model of single $\frac{1}{N} * \frac{\Delta N}{\Delta t} = r$				
(a). What are the principal assumptions of this model?	(3 pts)			
(b). What is the main prediction of this model? (please include a graph)	(3 pts)			
(c). What are the major problems with the assumptions and predictions of this mo	odel – in			
other words, what are the major ways in which this model clearly departs from eco	ological			
reality?	(3 pts)			
(d). Please briefly explain the use of this model in the areas of theoretical and ap ecological research that we discussed in class.	plied			
theoretical –	(3 pts)			
applied –	(3 pts)			

SAQ #3. According to your studies of a population of cockroaches in the cramped office of an unnamed Widener faculty member, each female cockroach has 10 female babies per month, 1 out of 2 adult females are killed by dropped books or spilled hot coffee each month, half of <u>all</u> surviving adult females emigrate to the adjacent offices each month, but none ever return since they use powerful (and carcinogenic) pesticides! Assume cockroaches can breed after only one month of life.

If there are 20 adult female cockroaches alive and breeding now (N_0), how many would there be in one and two months from now? {Note 1: ignore the problem of males} {Note 2: you do not need a calculator to find the numerical values asked for. The calculations involve only simple arithmetic.}

SHOW ALL OF YOUR WORK!!

how many in one month (N ₁)?	(3 pts)
how many in two months (N ₂)?	(3 pts)
10 points extra credit: - How many after one year? Email me the answer by Monday 10:30 (recall a each female cockroach has 10 female babies per month, 1 out of 2 adult females are killed by dr or spilled hot coffee each month, half of <u>all</u> surviving adult females emigrate to the adjacent offic month, but none ever return since they use powerful (and carcinogenic) pesticides! Assume coch breed after only one month of life. If there are 20 adult female cockroaches alive and breeding no many after one year? WORK ALONE PLEASE!!!	assumptions: opped books es each kroaches can ow (N_0), how

SAQ #4. Please offer a brief, but precise definition of evolution.

(4 pts)

SAQ #5. State the principal difference between evolution and natural selection?

(4pts)

age

SAQ #6. When age-specific survival rates (p_x) and fecundities (m_x) are fixed, there is fixed survivorship curve, I_x, found from an equation described in lab. Please briefly explain what the survivorship curve, I_x, shows AND YOU MUST USE THE AXES BELOW TO DRAW REPRESENTATIVE SURVIVORSHIP CURVES FOR <u>HIGH AND LOW</u> JUVENILE SURVIVAL IN YOUR EXPLANATION.

SAQ #7. Please briefly explain why the survivorship curve at right is impossible to obtain.

SAQ #8. When age-specific survival rates (p_x) and fecundities (m_x) are fixed, there is fixed age structure, c_x, found from a lengthy equation described in lab. Please briefly explain what the age structure curve, c_x, shows AND YOU MUST USE THE AXES BELOW TO DRAW
 A REPRESENTATIVE AGE STUCTURE CURVE IN YOUR EXPLANATION.

(4 pts)

SAQ #9. Please examine the figures below depicting the age structure curve for a developed country (such as Sweden) vs. a developing country (such as Indonesia). Which is most likely which and WHY? (4 pts)

- SAQ #10. What are the principal assumptions of this model? (4 pts)
- SAQ #11. Without using any math symbols or notation, explain in words what is the main prediction of this model? (4 pts)
- SAQ #12. Draw a little graph below showing the per capita population growth rate vs. the population size for this model. Indicate ALL relevant constants, and LABEL THE AXES! (4 pts)

SAQ #13. Draw a little graph below showing the population size vs. time beginning with an initially large (N >> K) <u>and</u> with an initially small (N << K) population size for this model. LABEL THE AXES AND ALL CONSTANTS!

(4 pts)

I. Longer Answer Questions.

- LAQ #1. This question will assess your understanding of how to calculate and interpret human population growth rates using "crude" birth and death rates.
 - (a). Please write down the basic equation used to perform this calculation including crude birth rate "b", and crude death rate "d". (Hint: recall that one begins with "size next time" equals the "size now" plus the "change in size"...)
- (b). Consider the spreadsheet below:

	A	В	C	D	E	
1	time	N	Crude hirth	rate = 24 hir	ths ner 100	n
2	2000	6,000,000,000	crude deat	h rate = 9 hir	ths per 100	n
3	2001	$\left(\right)$				ero T
4	2002		\			
E.	2003					

Q - exactly what formula goes into cell B3 that should be copied to all B's below to calculate the population size over the next century?

(7 pts)

(5 pts)

- LAQ #2. This question will assess your understanding of the pros and cons of various fisheries management options that we discussed in class.
- (a) Please state two totally different and very important long term effects on a population of <u>fish</u> that you should anticipate with the "minimum catch size plan" in which fisherman only keep fish larger than a given size?
 - 1- (5 pts) 2-
 - Q Is this management plan sustainable? Why or why not?
- (b). Please state two totally different and very important long term effects on a population of <u>fish</u> that you should anticipate with the management plan to build a fish hatchery to offset the effects of fishing?

1-2-

- Q Is this management plan sustainable? Why or why not?
- (c). Please describe the effects on a population of fish that you should anticipate with the management plan to reduce the number of fish taken by reducing the number of people and or times during which people can fish?
 (5 pts)

Q - Is this management plan sustainable? Why or why not?

(8 pts)

- LAQ #3. This question will assess your understanding of the numerical methods involved in finding the growth rate of an age-structured population.
- At left is a table of typical survival (px) and fecundity (mx) values.
- (a). Please briefly explain in words WITHOUT USING ANY SYMBOLS OR MATH NOTATION how you would go about finding the number of individuals alive of

	A	В	Q
1	age(x)	рх	mx
2	0	0.4	0
3	1	0.5	0
4	2	0.6	2
5	3	0.7	3
6	4	D	0

each age as well as the total size of the population <u>in the next time interval</u> assuming that you knew the age-specific population numbers now (N1, N2, N3, N4 of 10 each) and the survival and fecundity schedules (such as in the example at left). (7 pts)

- (b). Please set up the actual equation to find the size of the population in the next time based on the table above and if initially there were 10 individuals alive in each of the age classes (x = 0 to 4). (Note: you do not need a calculator, I only want to see that you can set-up the equation correctly.)
- LAQ #4. Consider the simple logistic model of single species population growth.

$$\frac{1}{N} * \frac{\Delta N}{\Delta t} = r * \left[1 - \frac{N}{K} \right]^{(8 \text{ pts})}$$

- At right is a composite figure of three simulations using K = 600 and increasing the "intrinsic" growth rate parameter "r" from 0.1 to 3.
- (a). Briefly describe what is happenning as one increases "r" from 0.1 to 3?

(5 pts)

(b). Recall that for the simple exponential model of population growth, the parameter "r" was a perfectly acceptable "fitness criterion." What is the argument for this point of view?

(5 pts)

(c). Given the pattern we see at right that happens as on increases "r" in the logistic model, what implications does this have for our use of "r" as a "fitness criterio now, and what should we do about it – i.e., what sho we use as our criterion for fitness in a population the growing logistically?

(5 pts)

page 5

LAQ #5. This question will assess your understanding of current life history theory.

(a). Please briefly define a "life history phenotype."

(5 pts)

(b). Current life history theory maintains that "the most fit organism should always adjust the allocation of its limited resources to to G, S, and R each year to maximize the sum of its present reproduction plus its expected future reproduction." Explain this concept in your own words. DO NOT SIMPLY RESTATE THE QUESTION. Please use a pie diagram of an individual energy budget in your response.

Please Read This Comment: You are welcome to download some or all of the material I have posted at this site for your use in your ecology course. This does not include commercial uses for profit. If you do use any lengthy exerpts (more than 2 lines) of the material above, I request that you formally acknowledge this site and/or sites I have acknowledged as the source(s). I also request that you reciprocate and send me a copy of your ecology materials so that I may see what you have put together. Please send comments to me: grant@pop1.science.widener.edu. Copyright - Bruce W. Grant, 2000.