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Notes on the Fourier Transform

The Fourier transform is a mathematical method for describing a continuous function as a series of 
sine and cosine functions.  The Fourier Transform is produced by applying a series of "Test 
Frequencies" to determine the contribution of each test function to the observed signal.  This 
document will outline the fundamentals of how the Fourier Transform (FT) works.  For additional 
details, a series of mathcad documents designed as homework exercises are available.

As an example, start with a 2 Hz cosine signal with an amplitude of 1.  This signal is "aquired" by a 
computer using an A-D (analog to digital) board in the computer.  For this experiment the 
computer samples the signal once every 1.953 ms for a total of 1 second.  This is a sampling rate 
of 512 Hz and it gives a data file with 512 points.

Sample and signal parameters:

Signal frequency in Hz. ν signal 2 Hz.( )

Signal frequency in radians per second. ω signal 2 π. ν signal
.

Signal amplitude A 1
ms 10 3 sec.

Time between points (Dwell Time) DT 1.953 ms.

Total acquisition time t aquire 1 sec.

Calculated Values from Above:

rate
1

DTSampling Rate

rate 512.033 Hz=

Number of points (floor is a function that 
returns an intiger, used since you can't 
have a fraction of a measurement)

N floor rate t aquire
.

N 512=

Equation for the signal at time t and to define the time of each point.

signal t( ) A cos ω signal t.. time 0
1

N
t aquire
., t aquire..

1

1

signal time( )

10 time

sec

0 0.2 0.4 0.6 0.8 1
1

0

1
Signal Waveform

This is just a cosine wave with an amplitude of 1 and a frequency of 2 Hz.  notice that there are two 
complete cycles in the 1 second that data is aquired.  Remember this curve is made from 512 points.
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Now that we have a signal, the fourier transform can determine the frequency components in the 
signal.  This is done by applying a series of test frequencies.  For each test frequency, the signal is 
multiplied by the test frequency to produce a new waveform.  The integration of the new (product) 
waveform is the signal at that test frequency

First let's use a 1 Hz test frequency to determine the intensity of the 1 Hz component in the signal. 

ν test 1 Hz. ω test 2 π. ν test
.

Generate the test wave:

test t( ) cos ω test t.

test time( )

time

sec

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

0.5

0

0.5

1
Test  Waveforms

signal time( )

test time( )
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Test and Signal Waveforms
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Next the product wave is produced by multiplying the two waveforms (signal and test)

Multiply the two waveforms, point by point: product t( ) test t( ) signal t( ).

product time( )

time

sec

0 0.2 0.4 0.6 0.8 1
1

0

1
Product Waveform

Integrate the product function to determine the area of the wave.  This is the intensity of the 
signal at 1 Hz (the test frequency):

Analytically (with calculus) Numerically (add the points)

0 sec.

t aquire
tproduct t( ) d 0 sec=

0

N 1

i

product i
t aquire

N
.

N
=

0=

Also intigrate the function by looking closely at it.  Notice that all the positive areas (above 0) and the 
negative areas (below zero) cancel.  This result should make sense.  The test frequency was 1 Hz, 
but the signal was 2 Hz.  There is no signal at 1 Hz.
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Now let's try it again with a 2 Hz test frequency.  (What do you expect the answer to be?)

ν test 2 Hz. ω test 2 π. ν test
.

Generate the test wave:

test t( ) cos ω test t.

signal time( )

test time( )

time

sec
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Test and Signal Waveforms

Next the product wave is produced by multiplying the two waveforms (signal and test)

Multiply the two waveforms, point by point: product t( ) test t( ) signal t( ).

product time( )

time

sec
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Product Waveform

Integrate the product function to determine the area of the wave.  This is the intensity of the 
signal at 2 Hz (the test frequency):

Analytically (with calculus) Numerically (add the points)

0 sec.

t aquire
tproduct t( ) d 0.5 sec=

0

N 1

i

product i
t aquire

N
.

N
=

0.5=

Also intigrate the function by looking closely at it.  Notice that the entire wave is above 0 so nothing 
cancles this time.  The product waveform intigrates to a positive value.  This should make sense since 
the signal and the test frequency are both 2 Hz.
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Finally let's try it again with a 3 Hz test frequency.  (What do you expect the answer to be?)

ν test 3 Hz. ω test 2 π. ν test
.

Generate the test wave:

test t( ) cos ω test t.

signal time( )

test time( )

time

sec
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Test and Signal Waveforms

Next the product wave is produced by multiplying the two waveforms (signal and test)

Multiply the two waveforms, point by point: product t( ) test t( ) signal t( ).

product time( )

time

sec

0 0.2 0.4 0.6 0.8 1
1

0
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Product Waveform

Integrate the product function to determine the area of the wave.  This is the intensity of the 
signal at 3 Hz (the test frequency):

Analytically (with calculus) Numerically (add the points)

0 sec.

t aquire
tproduct t( ) d 0 sec=

0

N 1

i

product i
t aquire

N
.

N
=

0=

Also intigrate the function by looking closely at it.  Notice that once again the negative and positive 
portions of the waveform all cancel. This should make sense since the signal is at 2 Hz and the test 
frequency is 3 Hz.  In a "real" experiment the signal will contain MANY different frequencies.  All at 
different intensities.  The FT can handel this just fine.
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Next we will examine the idea of "phase".  The orignal "theory" of the FT is that any continuous function 
may be described as a series of cosine and sine waves.  The cosine part is called the "real" and the 
sine part is called the "imaginary".  This is analogous to real and imaginary numbers used in 
mathematics.  This concept will be very important for FT-NMR so a bit of detail is relevant here.  (Note it 
is also important in FT-IR, but you do not usually realize it).

A 1 Hz cosine and sine waves looks like this:

ν 1 Hz. ω 2 π. ν.

00
cos time ω.( )

sin time ω.( )

time
0 0.2 0.4 0.6 0.8 1

1

0

1
1 Hz waveform

The cosine wave may also be shown vs the angle (A  1 Hz wave just goes around the circle once each 
second).  This angle is in radians or degrees.

angle 0 0.1, 2 π...

0
cos angle( )

sin angle( )

π
2

π

angle

rad

0 1 2 3 4 5 6
1

0

1
1 cycle

The wave may also be displayed with the angle in degrees.

0
cos angle( )

sin angle( )

90 180

angle

deg

0 50 100 150 200 250 300 350
1

0

1
1 Cycle
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Notice that the sine and cosine waves are separated by a 90 degree (or π/2 radian) "phase angle.  
Watch what happens to a sine wave if a π/2 degree phase angle is added to it.

0
sin angle π

2

π
2

π

angle

rad

0 1 2 3 4 5 6
1

0

1
1 cycle

Now it is the same as a cosine wave.  So a sine and cosine wave are separated by 90 degrees.  If you 
subtract 90 degrees from a cosine wave it will look just like a sine wave.

Next we can relate this to the phase of a signal waveform.  If the signal waveform is a pure cosine wave 
(like the signal we used above).  The signal is "real".  Alternatively, if the signal is a pure sine wave it is 
an "imaginary" signal.  NOTE:  These are just names, they do not imply anything about the "reality" of 
the signal.

We can show this by now using two test waves.  One cosine and one sine.  Watch what happens when 
we look at a 1 Hz "real" signal, with 1 Hz cosine and 1 Hz sine test waves.

Generate the waveforms:

signal t( ) cos 2 π. Hz. t.( )

test real t( ) cos 2 π. Hz. t.( )

test im t( ) sin 2 π. Hz. t.( )

signal time( )

test real time( )

test im time( )

time

sec

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1
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Test and Signal Waveforms
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Next the product wave is produced by multiplying the two waveforms (signal and test)

product real t( ) test real t( ) signal t( ). product im t( ) test im t( ) signal t( ).

0

product real time( )

product im time( )

time

sec

0 0.2 0.4 0.6 0.8 1
0.5

0

0.5

1
Product Waveforms

Integrate the product function to determine the "real" and "imaginary" signal.

Integrate the imaginary signal:
Integrate the real signal:

0 sec.

t aquire
tproduct im t( ) d 0 sec=

0 sec.

t aquire
tproduct real t( ) d 0.5 sec=

This result is consistent with what you expect.  Since the signal is a pure cosine wave it should be all 
"real".  It also is consistent with visual inspection of the product waveforms.
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Next let's see what happens if the signal is a pure sine wave.

Generate the waveforms:

signal t( ) sin 2 π. Hz. t.( )

test real t( ) cos 2 π. Hz. t.( )

test im t( ) sin 2 π. Hz. t.( )

signal time( )

test real time( )

test im time( )

time

sec

0 0.2 0.4 0.6 0.8 1
1

0

1
Test and Signal Waveforms

Next the product wave is produced by multiplying the two waveforms (signal and test)

product real t( ) test real t( ) signal t( ). product im t( ) test im t( ) signal t( ).

0

product real time( )

product im time( )

time

sec

0 0.2 0.4 0.6 0.8 1
0.5

0

0.5

1
Product Waveforms

Integrate the product function to determine the "real" and "imaginary" signal.

Integrate the real signal: Integrate the imaginary signal:

0 sec.

t aquire
tproduct real t( ) d 0 sec=

0 sec.

t aquire
tproduct im t( ) d 0.5 sec=

This result is consistent with what you expect.  Since the signal is a pure sine wave it should be all 
"imaginary".  It also is consistent with visual inspection of the product waveforms.
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Next what happens if the signal has a phase between 0 (cosine or real) and 90 (sine or imginary).

Generate the waveforms:

signal t( ) cos 2 π. Hz. t. π
4

A 45 degree phase angle

test real t( ) cos 2 π. Hz. t.( )

test im t( ) sin 2 π. Hz. t.( )

signal time( )

test real time( )

test im time( )

time

sec

0 0.2 0.4 0.6 0.8 1
1
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1
Test and Signal Waveforms

Next the product wave is produced by multiplying the two waveforms (signal and test)

product real t( ) test real t( ) signal t( ). product im t( ) test im t( ) signal t( ).

0
product real time( )

product im time( )

time

sec
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Product Waveforms

Integrate the product function to determine the "real" and "imaginary" signal.

Integrate the real signal: Integrate the imaginary signal:

0 sec.

t aquire
tproduct real t( ) d 0.354 sec=

0 sec.

t aquire
tproduct im t( ) d 0.354 sec=

This result is consistent with what you expect.  Since the signal is midway between a sine and a cosine 
wave.  The intensity of the real signal is 0.5 cos 45 deg.( ). 0.354=  and the intensity of the imaginary 
signal is 0.5 sin 45 deg.( ). 0.354=   .  The negative sign comes from the angle relative to the cosine 
and sine test waves (the signal is ahead of one and behind the other. 
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One more angle just to be certain everything fits together.

Generate the waveforms:

signal t( ) cos 2 π. Hz. t. π
6

A 30 degree phase angle

test real t( ) cos 2 π. Hz. t.( )

test im t( ) sin 2 π. Hz. t.( )

signal time( )

test real time( )

test im time( )

time

sec

0 0.2 0.4 0.6 0.8 1
1
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1
Test and Signal Waveforms

Next the product wave is produced by multiplying the two waveforms (signal and test)

product real t( ) test real t( ) signal t( ). product im t( ) test im t( ) signal t( ).

0
product real time( )

product im time( )

time

sec

0 0.2 0.4 0.6 0.8 1
1
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1
Product Waveforms

Integrate the product function to determine the "real" and "imaginary" signal.

Integrate the real signal: Integrate the imaginary signal:

0 sec.

t aquire
tproduct real t( ) d 0.433 sec=

0 sec.

t aquire
tproduct im t( ) d 0.25 sec=

This result is consistent with what you expect.  Since the signal is midway between a sine and a cosine 
wave.  The intensity of the real signal is 0.5 cos 30 deg.( ). 0.433=  and the intensity of the imaginary 
signal is 0.5 sin 30 deg.( ). 0.25=   .  The negative sign comes from the angle relative to the cosine 
and sine test waves (the signal is ahead of one and behind the other. 
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This document was developed by:
Scott E. Van Bramer
Department of Chemistry
Widener University
Chester, PA 19013
svanbram@science.widener.edu
http://science.widener.edu/~svanbram
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cancles this time.  The product waveform intigrates to a positive value.  This should make sense since 
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Next we will examine the idea of "phase".  The orignal "theory" of the FT is that any continuous function 

mathematics.  This concept will be very important for FT-NMR so a bit of detail is relevant here.  (Note it 

The cosine wave may also be shown vs the angle (A  1 Hz wave just goes around the circle once each 
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