TABLE **14.4** Approximate Chemical Shifts of Various Hydrogens^{*a,b*}

Hydrogen	δ (ppm)
CH ₃	0.8–1.0
CH ₂	1.2–1.5
CH	1.4-1.7
C=C-CH (allylic hydrogens)	1.8-2.3
O=C-CH	2.0-2.5
Ph-CH (benzylic hydrogens)	2.3-2.8
≡C−H	2.5
R ₂ N-CH	2.0-3.0
I-CH	2.8-3.3
Br-CH	2.8-3.5
CI-CH	3.1–3.8
F-CH	4.1–4.7
O-CH	3.1–3.8
=CH ₂ (terminal alkene)	5.0
C=CH (internal alkene)	4.5-5.5
Ph—H (aromatic hydrogens)	7.0–7.5
O=CH (aldehyde hydrogens)	9.0-10.0
RCOOH	10–13

^aThese values are approximate. There will surely be examples that lie outside the ranges indicated. Use them as guidelines, not "etched in stone" inviolable numbers.

TABLE 14.5 Some ¹³C Chemical Shifts

Type of Carbon	Chemical Shift (δ) ^a	Type of Carbon	Chemical Shift $(\delta)^a$
Alkanes	All resolutions from the control of the	Alcohols, ethers	
Methyl	0–30	C-O	50–90
Methylene	15–55	Amines	
Methine	25–55	C-N	40–60
Quaternary	30–40	Halogens	
Alkenes		C-F	70–80
C=C	80–145	C-CI	25–50
Alkynes		C-Br	10–40
C≡C	70–90	C-I	-20-10
Aromatics	110–170	Carbonyls, C=O	
Benzene	128.7	R ₂ C=O	190–220
		RXC=O(X=O or N)	150–180

^aThe chemical shift δ is in parts per million (ppm) from TMS.

^bWatch out for loose talk. For example, "aromatic hydrogen" means a hydrogen attached to a benzene ring.