Third Exam CHEM 256 – Organic Chemistry II Prof. Bastin Spring 2015

Name	e	Section					
1.	DO NOT START this exam until you	are instructed to begin.					
2.	There are FOURTEEN pages including this cover sheet and the IR frequency and NMR chemical shift tables - make sure they are all here!						
3.	Provide <i>CLEAR</i> , <i>CONCISE</i> answers using unambiquous, carefully drawn structures and mechanisms for the appropriate questions. <i>Be sure to read each question VERY CAREFULLY</i> .						
4.	Do not provide mechanisms for synthesis and product prediction problems.						
5.	You may only use a pen or pencil and the materials provided in this packet on this exam.						
6.	If you have papers and/or books with you, they are to be left on the floor AT THE FRONT OF THE ROOM . If you need scrap paper please ask.						
7.	Cell phones must be OFF and placed on the table at the FRONT of the ROOM .						
	1)/13 pts	10)/10 pts					
	2)/13 pts						
	3)/6 pts						
	4)/8 pts	Total:/100 pts					
	5)/10 pts						
	6)/12 pts						
	7)/12 pts						
	8)/8 pts						
	9)/8 pts						

- 1) (13 pts) Provide structures for the following compounds.
 - a) isobutyl alcohol

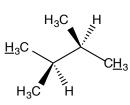
b) 1-hexen-2-ol

c) trans-2-ethyl-3-methyl-1-cyclopentanone

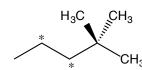
d) *p*-fluorobenzophenone

e) 2,5-dibromoheptanal

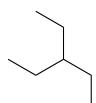
f) 3,4-dichlorohexane carbaldehyde


2) (13 pts) Provide either common or IUPAC names for the following compounds.

3) (6 pts) Identify the symmetrical relationship (homotopic, enantiotopic, diastereotopic) of the underlined or starred atoms in the following molecules.

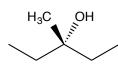

a)

b)



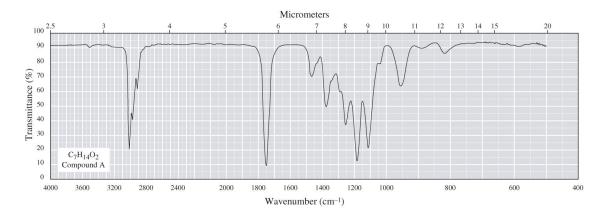
c)

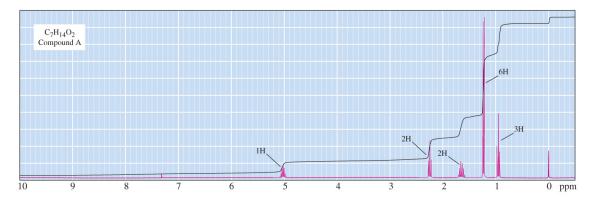
4) (8 pts) Indicate the number of peaks that a (a) ¹³C-NMR spectrum and (b) ¹H-NMR spectrum of each of the following molecules would contain?

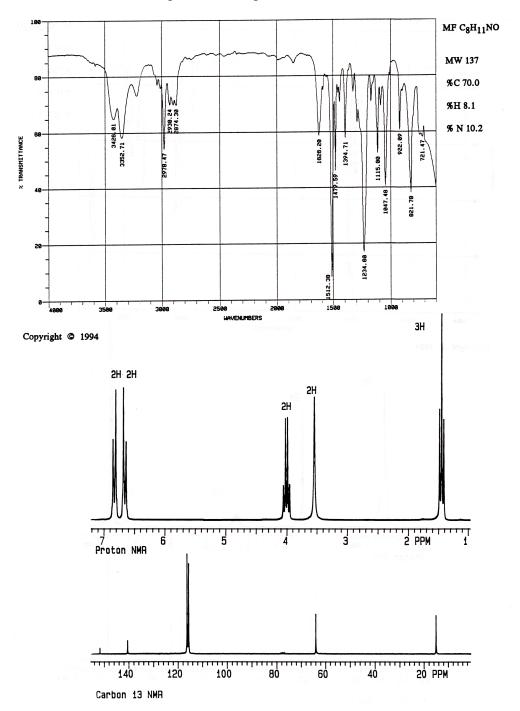

a)

b)

c)




d)


5) (10 pts) Phenolphthalein is often used as an indicator in acid-base titration experiments because its color depends upon the pH of the solution. When the solution is acidic or near neutral (pH < 8), it is colorless. Under mildly basic conditions (pH 9-13), the solution is red. Under strongly basic conditions (pH > 14), the solution is colorless again. Given the following structures of phenolphthalein under the various pH conditions indicated, explain the color dependence on pH.

6) (12 pts) Propose a structural formula for compound A, C₇H₁₄O₂, consistent with the following ¹H-NMR and IR spectra. To receive credit you must justify your structure by assigning ALL the appropriate peaks in the IR and NMR spectra and provide a short narrative describing what structural information each piece of data provided.

7) (12 pts) Provide the structure of a compound with the molecular formula C₈H₁₁NO using the IR, ¹H-NMR, and ¹³C-NMR provided below. Justify your structure by assigning ALL the appropriate peaks in the IR and NMR spectra and with a short narrative describing what structural information each piece of data provided.

8) (8 pts) Draw the major product(s), if any, of the following reactions. Indicate stereochemistry where relevant.

b)

Br
$$\frac{1) \text{ H}_3\text{CH}_2\text{C} - \text{C} \equiv \text{CNa}}{2) \text{ HCI}}$$

9) (8 pts) Provide the reagent(s) needed to bring about the following transformations.

a) HO HO

10) (10 pts) Provide a mechanism for the following reaction.

Functional Group	Frequency (cm ⁻¹)	Intensity and Comments	
Alkanes			
С–Н	2980-2850	medium to strong	
C-C	1480-1420	medium	
Alkenes			
=C-H stretch	I stretch 3150-3000 medium; very weak for trans		
=C-H bend	980-960 (trans)	strong	
	730-665 (cis)	strong	
C=C	1680-1600	weak to medium	
Alkynes			
≡С-Н	3350-3300	strong	
C≡C	2260-2100	weak to medium	
Alkyl halides			
C-Cl	800-600	strong	
C–Br	600-500	strong	
C–I	500	strong	
Alcohols			
О–Н	3650-3300	strong and broad	
C-O	1350-1050	strong	
Amines			
N–H	3500-3100	medium and strong; 1° amines-2 bands; 2° amines-1 band	
C-N	~1200	medium	
Aromatics			
C-H stretch	3080-3020	weak to medium	
C–H bend	900-730	strong	
C=C	1650-1580	weak to medium	
Carbonyls (C=O)			
Ketones	1730-1700	strong	
Aldehydes	1730-1700	strong; also has a O=C-H doublet at ~2700 & 2800 cm ¹	
Esters	1750-1735	strong; also has C–O stretch	
Amides	1680-1630	strong; 1° and 2° amides also have N-H stretch	
Acids	1730-1700	strong; also has O–H stretch	
Acid Anhydride	1850-1740	strong; doublet	
Acid Chlorides	1820-1770	strong	
Nitrile (C≡N)	2200-2250	medium	
Nitro (NO ₂)	Doublet at:	strong	
_	1570-1550 &		
	1380-1360		

TABLE 14.4 Approximate Chemical Shifts of Various Hydrogens^{a,b}

Hydrogen	δ (ppm)
CH ₃	0.8–1.0
CH ₂	1.2–1.5
CH	1.4-1.7
C=C-CH (allylic hydrogens)	1.8-2.3
O=C-CH	2.0-2.5
Ph—CH (benzylic hydrogens)	2.3-2.8
≡C-H	2.5
R ₂ N-CH	2.0-3.0
I-CH	2.8-3.3
Br-CH	2.8-3.5
CI-CH	3.1–3.8
F-CH	4.1–4.7
O-CH	3.1–3.8
=CH ₂ (terminal alkene)	5.0
C=CH (internal alkene)	4.5–5.5
Ph-H (aromatic hydrogens)	7.0–7.5
O=CH (aldehyde hydrogens)	9.0-10.0
RCOOH	10–13

^aThese values are approximate. There will surely be examples that lie outside the ranges indicated. Use them as guidelines, not "etched in stone" inviolable numbers.

degrees of unsaturation = (#C atoms) - (#H atoms)/2 + (#N atoms)/2 + 1

TABLE 14.5 Some ¹³C Chemical Shifts

Type of Carbon	Chemical Shift (δ) ^a	Type of Carbon	Chemical Shift (δ) ^a
Alkanes		Alcohols, ethers	
Methyl	0–30	C-O	50–90
Methylene	15–55	Amines	
Methine	25–55	C-N	40–60
Quaternary	30–40	Halogens	
Alkenes		C-F	70–80
C=C	80–145	C-CI	25–50
Alkynes		C-Br	10–40
C≡C	70–90	C-I	-20-10
Aromatics	110–170	Carbonyls, C=O	
Benzene	128.7	R ₂ C=O	190–220
Marian Carlos Francisco	NAMES OF STREET	$\overrightarrow{RXC}=O$ (X = O or N)	150–180

^aThe chemical shift δ is in parts per million (ppm) from TMS.

^bWatch out for loose talk. For example, "aromatic hydrogen" means a hydrogen attached to a benzene ring.