## Third Exam CHEM 256 – Organic Chemistry II Prof. Bastin Spring 2016

Name \_\_\_\_\_

Section \_\_\_\_\_

- 1. DO NOT START this exam until you are instructed to begin.
- 2. There are FOURTEEN pages including this cover sheet and the IR frequency and NMR chemical shift tables make sure they are all here!
- 3. Provide *CLEAR*, *CONCISE* answers using unambiquous, carefully drawn structures and mechanisms for the appropriate questions. *Be sure to read each question VERY CAREFULLY*.
- 4. Do not provide mechanisms for synthesis and product prediction problems.
- 5. You may only use a pen or pencil and the materials provided in this packet on this exam.
- 6. If you have papers and/or books with you, they are to be left on the floor **AT THE FRONT OF THE ROOM**. If you need scrap paper please ask.
- 7. Cell phones must be **OFF and placed on the table at the FRONT of the ROOM**.

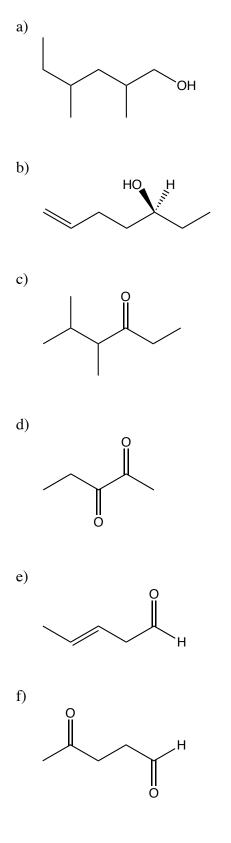
- 1) \_\_\_\_/15 pts
- 2) \_\_\_\_/14 pts
- 3) \_\_\_\_/10 pts

Total: \_\_\_\_/100 pts

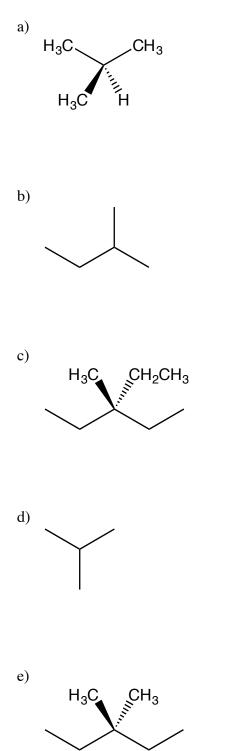
- 4) \_\_\_\_/11 pts
- 5) \_\_\_\_/12 pts
- 6) \_\_\_\_/12 pts
- 7) \_\_\_\_/12 pts
- 8) \_\_\_\_/14 pts

- 1) (15 pts) Provide structures for the following compounds.
  - a) *sec*-butyl alcohol

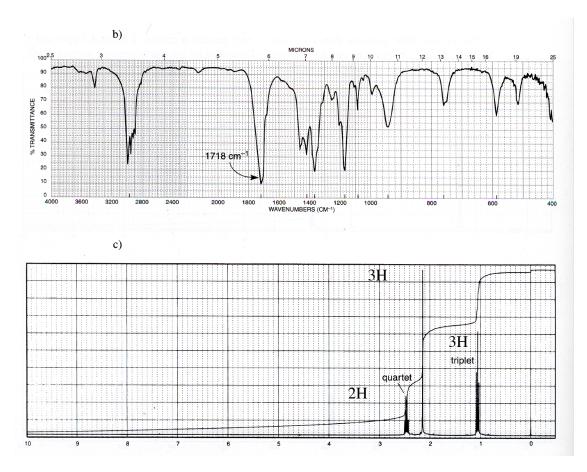
b) 1-penten-2-ol


c) *cis*-2-methyl-3-propyl-1-cyclohexanone

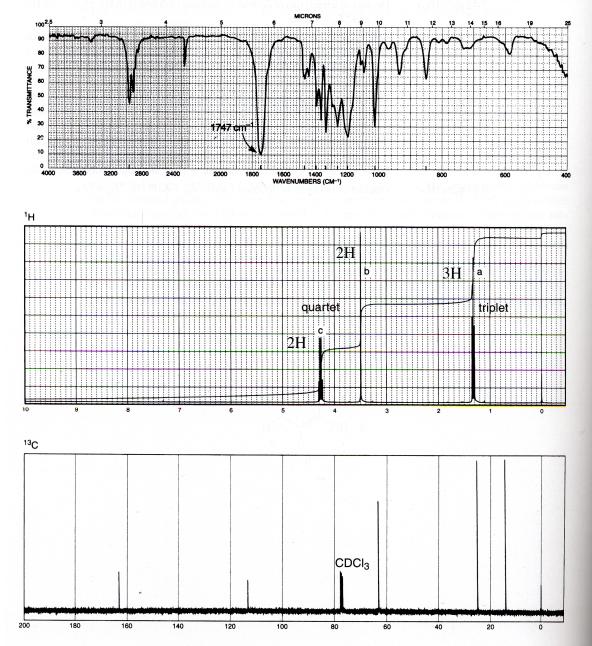
d) *p*-fluoroacetophenone


e) 2,5-diethyloctanal

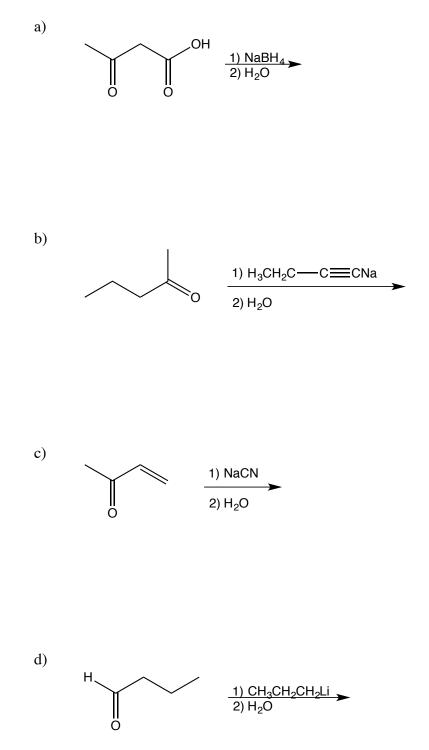
f) 2,4-dihydroxycyclohexane carbaldehyde


2) (14 pts) Provide either common or IUPAC names for the following compounds.

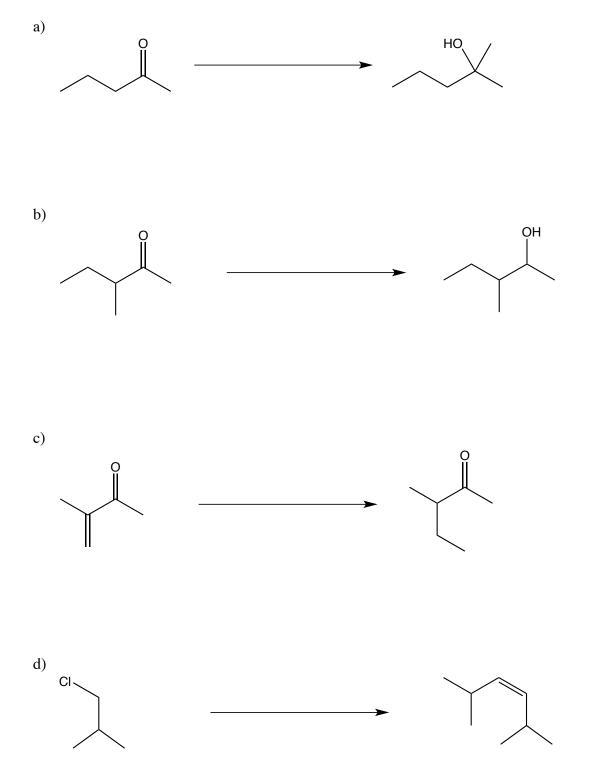



3) (10 pts) Indicate the number of peaks that a <sup>13</sup>C-NMR spectrum of each of the following molecules would contain?

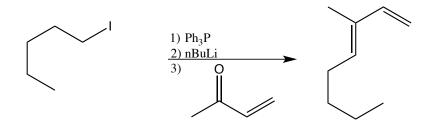



4) (11 pts) Propose a structural formula for compound A, C<sub>4</sub>H<sub>8</sub>O, consistent with the following <sup>1</sup>H-NMR and IR spectra. To receive credit you must justify your structure by assigning ALL the appropriate peaks in the IR and NMR spectra and provide a short narrative describing what structural information each piece of data provided.




5) (12 pts) Provide the structure of a compound with the molecular formula  $C_5H_7NO_2$  using the IR, <sup>1</sup>H-NMR, and <sup>13</sup>C-NMR provided below. To receive credit you must justify your structure by assigning ALL the appropriate peaks in the IR and NMR spectra and provide a short narrative describing what structural information each piece of data provided.




6) (12 pts) Draw the major product(s), if any, of the following reactions. Indicate stereochemistry where relevant.



7) (12 pts) Provide the reagent(s) needed to bring about the following transformations.



8) (14 pts) Provide a mechanism for the following reaction.



| <b>Functional Group</b>  | Frequency (cm <sup>-1</sup> ) | Intensity and Comments                                                 |  |
|--------------------------|-------------------------------|------------------------------------------------------------------------|--|
| Alkanes                  |                               |                                                                        |  |
| C–H                      | 2980-2850                     | medium to strong                                                       |  |
| C–C                      | 1480-1420                     | medium                                                                 |  |
| Alkenes                  |                               |                                                                        |  |
| =C-H stretch             | 3150-3000                     | medium; very weak for trans                                            |  |
| =C-H bend                | 980-960 (trans)               | strong                                                                 |  |
|                          | 730-665 (cis)                 | strong                                                                 |  |
| C=C                      | 1680-1600                     | weak to medium                                                         |  |
| Alkynes                  |                               |                                                                        |  |
| ≡C–H                     | 3350-3300                     | strong                                                                 |  |
| C≡C                      | 2260-2100                     | weak to medium                                                         |  |
| Alkyl halides            |                               |                                                                        |  |
| C–Cl                     | 800-600                       | strong                                                                 |  |
| C–Br                     | 600-500                       | strong                                                                 |  |
| C–I                      | 500                           | strong                                                                 |  |
| Alcohols                 |                               |                                                                        |  |
| O-H                      | 3650-3300                     | strong and broad                                                       |  |
| C-O                      | 1350-1050                     | strong                                                                 |  |
| Amines                   |                               |                                                                        |  |
| N–H                      | 3500-3100                     | medium and strong; 1° amines-2 bands; 2° amines-1 band                 |  |
| C–N                      | ~1200                         | medium                                                                 |  |
| Aromatics                |                               |                                                                        |  |
| C–H stretch              | 3080-3020                     | weak to medium                                                         |  |
| C–H bend                 | 900-730                       | strong                                                                 |  |
| C=C                      | 1650-1580                     | weak to medium                                                         |  |
| Carbonyls (C=O)          |                               |                                                                        |  |
| Ketones                  | 1730-1700                     | strong                                                                 |  |
| Aldehydes                | 1730-1700                     | strong; also has a O=C-H doublet at $\sim$ 2700 & 2800 cm <sup>1</sup> |  |
| Esters                   | 1750-1735                     | strong; also has C–O stretch                                           |  |
| Amides                   | 1680-1630                     | strong; 1° and 2° amides also have N-H stretch                         |  |
| Acids                    | 1730-1700                     | strong; also has O–H stretch                                           |  |
| Acid Anhydride           | 1850-1740                     | strong; doublet                                                        |  |
| Acid Chlorides           | 1820-1770                     | strong                                                                 |  |
| Nitrile (C≡N)            | 2200-2250                     | medium                                                                 |  |
| Nitro (NO <sub>2</sub> ) | Doublet at:                   | strong                                                                 |  |
| × 2'                     | 1570-1550 &                   |                                                                        |  |
|                          | 1380-1360                     |                                                                        |  |

TABLE 14.4Approximate ChemicalShifts of Various Hydrogens<sup>a,b</sup>

|                                    | X dilian in the |
|------------------------------------|-----------------|
| Hydrogen                           | δ <b>(ppm)</b>  |
| CH3                                | 0.8–1.0         |
| CH <sub>2</sub>                    | 1.2-1.5         |
| СН                                 | 1.4-1.7         |
| C=C-CH (allylic hydrogens)         | 1.8–2.3         |
| O=C-CH                             | 2.0–2.5         |
| Ph-CH (benzylic hydrogens)         | 2.3–2.8         |
| ≡C−H                               | 2.5             |
| R <sub>2</sub> N-CH                | 2.0–3.0         |
| I-CH                               | 2.8–3.3         |
| Br-CH                              | 2.8–3.5         |
| CI-CH                              | 3.1–3.8         |
| F-CH                               | 4.1–4.7         |
| O-CH                               | 3.1–3.8         |
| =CH <sub>2</sub> (terminal alkene) | 5.0             |
| C=CH (internal alkene)             | 4.5–5.5         |
| Ph-H (aromatic hydrogens)          | 7.0–7.5         |
| O=CH (aldehyde hydrogens)          | 9.0–10.0        |
| RCOOH                              | 10–13           |
|                                    |                 |

<sup>a</sup>These values are approximate. There will surely be examples that lie outside the ranges indicated. Use them as guidelines, not "etched in stone" inviolable numbers.

<sup>b</sup>Watch out for loose talk. For example, "aromatic hydrogen" means a hydrogen attached to a benzene ring.

degrees of unsaturation = (#C atoms) – (#H atoms)/2 + (#N atoms)/2 + 1

## TABLE 14.5 Some <sup>13</sup>C Chemical Shifts

| Type of Carbon | Chemical Shift (δ) <sup>a</sup>      | Type of Carbon                                | Chemical Shift $(\delta)^a$ |
|----------------|--------------------------------------|-----------------------------------------------|-----------------------------|
| Alkanes        | and the state has been been been and | Alcohols, ethers                              |                             |
| Methyl         | 0–30                                 | C-0                                           | 50–90                       |
| Methylene      | 15–55                                | Amines                                        |                             |
| Methine        | 25–55                                | C-N                                           | 40–60                       |
| Quaternary     | 30–40                                | Halogens                                      |                             |
| Alkenes        |                                      | C-F                                           | 70–80                       |
| C=C            | 80–145                               | C-CI                                          | 25–50                       |
| Alkynes        |                                      | C-Br                                          | 10–40                       |
| C=C            | 70–90                                | C-I                                           | -20-10                      |
| Aromatics      | 110–170                              | Carbonyls, C=O                                |                             |
| Benzene        | 128.7                                | $R_2C=0$                                      | 190-220                     |
|                |                                      | $\overrightarrow{RXC}=O(X = O \text{ or } N)$ | 150-180                     |

<sup>a</sup>The chemical shift  $\delta$  is in parts per million (ppm) from TMS.

76) An adjacent hudragen "feelk" only an averaged perturbation