Widener University

Fall 2004

ESSC 108E	Introduction	to Astronomy
Prof. Augen	sen	

Name (Ley #5

QUIZ #5 Chap. 3b

- A 1. Photons with very long wavelengths correspond to:
 - a) low frequencies
 - b) high frequencies
 - c) high speeds
 - d) high energies
- A 2. An incandescent, low density gas (such as hydrogen) emits what type of spectrum?
 - a) emission
 - b) absorption
 - c) continuous
- C 3. Astronomers can deduce the chemical composition of a star's atmosphere by examining its:
 - a) size
 - b) temperature
 - c) absorption spectrum
 - d) velocity in space
- A 4. Of the following, the star with the *coolest* temperature would have the color:
 - a) red
 - b) white
 - c) blue
 - d) yellow
 - e) orange
- B 5. If the spectral lines in a star appear shifted from their normal positions to *longer* wavelengths, we can infer that the star is _____ the observer:
 - a) approaching
 - b) receding from
 - c) traveling at right angles to
 - d) fixed relative to
- A. According to the Bohr model of the hydrogen atom, a hydrogen atom emits a photon when:
 - a) the electron jumps from a high energy level to a lower one
 - b) the electron jumps from a low energy level to a higher one
 - c) the atom collides with another atom
 - d) the atom is at very low temperature